
 
Abstract—In 2014 Mubarki, Al-Rshudi, and Al-
Juhani introduced and studied the notion of a set in 
general topology called open*  set and 
investigated its fundamental properties and studied 
the relationships between open*  set and other 
topological sets including continuity*   in 
topological spaces. We introduce and investigate 
several properties and characterizations of a new 
class of functions between topological spaces called 

open  , closed  ,  continuous   and 
irresolute  functions in topological spaces. We 

also introduce slightly  continuous,  totally 
continuous   and almost continuous   

functions between topological spaces and establish 
several characterizations of these new forms of 
functions. Furthermore, we also introduce and 
investigate certain ramifications of contra continuous 
and allied functions, namely, 
contra continuous,    and  almost 
contra continuous   functions along with their 
several properties, characterizations and natural 
relationships. Moreover, we introduce new types of 
closed graphs by using open   sets and investigate 
its properties and characterizations in topological 
spaces.  

Keywords: Topology, Pure Mathematics 

1. INTRODUCTION 

In recent literature, we find many topologists have 
focused their research in the direction of investigating 
different types of generalized continuity. One of the 
outcomes of their research leads to the initiation of 
different orientations of contra continuous functions.  
In 2014 Mubarki, Al-Rshudi, and Al-Juhani  
introduced and studied the notion of set in general 
topology called open  sets and investigated its 
fundamental properties and studied the relationship 
between open  set and other topological sets 
including continuity   in topological spaces.  In 
this paper, we introduce and investigate several 

properties and characterizations of a new class of 
maps between topological spaces called open   
maps, open   maps,  continuous   maps and 

irresolute   maps. We also introduce slightly 
continuous,  totally continuous  and almost 
continuous  maps between topological spaces 

and establish several characterizations of these new 
forms of maps. Furthermore, we also introduce and 
investigate fundamental properties of contra 
continuous and allied functions, namely, 
contra continuous,   almost continuous,   
and almost contra continuous   functions along 
with their several properties, characterizations and 
natural relationships. Moreover, we introduce new 
types of graphs, called closed, 

contra closed   and strongly 
contra closed   graphs via open   sets. 
Several characterizations and properties of such 
notions are investigated.  

Throughout this paper  X ,  or simply by X  we 
denote topological space on which no separation 
axioms are assumed unless explicitly stated and 

    f : X , Z ,  means a mapping f  from a 
topological space X  to a topological space Z. If U  
is a set and x  is a point in X  then  N x ,   Int U ,

 Cl U and cU X UΒ  denote respectively, the 
neighbourhood system of x, the interior of U ,  the 
closure of U  and complement of U.  

2. OPENSETSINTOPOLOGICALSPACES
 

 
 
Definition 2.1.  A subset A  of a topological 
space X  is called semi open  set if 

  .A Cl Int A     
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Definition 2.2.  A subset 

A

of a topological 
space X  is called  open   set if 

   .A Int Cl Int A     

Definition 2.3.  A subset A of a topological 
space X  is called  open   set if 

   .A Cl Int Cl A     

Definition 2.4.  A subset 

A

of a topological 
space X  is called  pre open  set if 

  .A Int Cl A     

Definition 2.5.  A subset A  of a topological 
space X  is said to be  b open  set if 

    .A Cl Int A Int Cl A       U  

Definition 2.6.  Let  ,X   be a topological 
space. Then a point x X  is called the 

cluster  point of A X if 
 A Int Cl U    I  for every open set U of X

containing .x The set of all cluster points of A is 
called the cluster   points of ,A  denoted by 

 .Cl A  A subset A X  is called closed   if 

 .A Cl A  

Definition 2.7.  Let  ,X   be a topological 
space and .A X  Then A  is called open   
set if its complement X A  is  closed   in 

.X  The collection of all open   sets in a 

topological space  ,X   forms a topology   on 
,X  weaker than   and the class of all regular 

open sets in   forms an open basis for .  

Definition 2.8.  A subset A of a topological 
space X  is called  e* open  set if 

   .A Cl Int Cl A
     

Definition 2.9.  Let  ,X   be a topological 
space. Then a subset  A  of X  is said to be 

* open   if 

     .A Cl Int Cl A Int Cl A
     U  The family 

of all * open   subsets of a topological space  

 ,X   will be as always denoted by  * .O X  

Definition 2.10.  A subset A of a topological 
space  ,X   is said to be a * closed   set if 

     .Int Cl Int A Cl Int A A
       I   

The family of all * closed   subsets of a 

topological space   ,X   will be as denoted by 

 * .C X  

Remark 2.11.  The following diagram holds for 
each a subset  A  of .X  

open set open set preopen set b open
set open set * open set e* open set



 

    

     

 

Theorem 2.12.  Let   ,X   be a topological 
space. Then the following assertions hold: 

 1  The arbitrary union of * open  sets is 
* open.   

 2  The arbitrary intersections of * closed is 
* closed.   

Proof .  1  Let  :iA i I  be a family of 
* open  sets. Then 

    i i iA Cl Int Cl A Int Cl A
     U  and 

therefore immediately it follows that 

     i i ii I i I
A Cl Int Cl A Int Cl A 

      UU U

     ,i ii I i I
Cl Int Cl A Int Cl A 

   
  

UU U  for 

all .i I  Thus ii I
A

U  is  * open.  

 2  It follows from  1 .  

Remark 2.13.  The next example shows that the 
intersection of any two * open  sets is not 

* open.   

Example 2.14.  Let  1,2,3X   with topology 

      , 1 , 2 , 1,2 , .X   Then  1,3A   and 
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 2,3B   are * open  sets. But  A B 3I  
is not * open.   

Definition 2.15.  Let  ,X   be a topological 
space. Then:  

 1  The union of all * open   sets of X  
contained in A is called the * interior   of  A  

and is denoted by  * .Int A   

 2  The intersection of all * closed   sets of 
X  containing A is called the * closure  of  A  

and is denoted by  * Cl A .   

Theorem 2.16.  Let  ,A  B  be two subsets of a 

topological space  , .X   Then the following 
assertions are true: 

  1  * Cl X X    and  * .Cl     

 2    * .A Cl A   

 3  If ,A B  then    * * .Cl A Cl B     

 4   *x Cl A   if and only if for each a 
* open   set  U  containing ,x  .U A I  

 5  A  is * closed   set if and only if 

 * .A Cl A   

 6     * * * .Cl Cl A Cl A          

 7  

     * * * .Cl A Cl B Cl A B     U U  

 8      * * * .Cl A B Cl A Cl B     I I  

Theorem 2.17.  Let  ,A  B  be two subsets of a 

topological space  , .X   Then the following 
assertions are true: 

  1  * Int X X    and  * .Int     

 2    * .Int A A    

 3  If ,A B  then    * * .Int A Int B     

 4   *x Int A   if and only if there exists  
* open   set   W  such that  .x W A   

 5  A  is * open  set if and only if 

 * .A Int A   

 6     * * * .Int Int A Int A          

 7  

     * * * .Int A B Int A Int B     I I  

 8

     * * * .Int A Int B Int A B     U U  

 

3. CONTINUOUS FUNCTIONS
   

 In this section, we introduce a new type of 
continuous map called a * continuous  map and 
obtain some of its properties and characterizations. 
Definition 3.1.   Let  X ,   and  Y ,   be two 
topological spaces. A map    f : X , Y ,  is 

called an * continuous  function if the inverse 
image of each open set in Y  is an * open  set in 
X .   
Theorem 3.2.Every continuous function is 

* continuous.  
Proof.  Let    f : X , Y ,  be a continuous 
function and W  be an open set in Y .  By hypothesis 
f  is continuous. Then  1f W  is an open set in X .  

Since     * O X , .  Therefore,  1f W  is 

* open  in X .  Hence f  is * continuous.  
The converse of the above theorem is not true as 
shown in the following example. 
Example 3.3.  Let the set  X a,b,c,d  and let

          , a , c , a,c , a,b,c , a,c,d ,X   be a 

topology on X .  Let    f : X , X ,   be a 
function defined by 
       f a f b f d c, f c a.     We note that 

 a,b,d  is a *open set in X .  Then 

    1f c a,b,d   is a * open  set in X .  Then 
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clearly f  is a * continuous  function. Now since 

    1f c a,b,d   is not an open set in X .  

Therefore, f  is not a continuous map. 
Theorem 3.4.   Let  X ,   and  Y ,   be two 

topological spaces. Let f  be a map from X  into Y .  
Then the following statements are equivalent: 
 1  f  is a * continuous map; 

 2  The inverse image of a closed set in Y  is a   

* closed set in X ;  

 3    1 1       * Cl f B f Cl B  for every set  

B  in Y;  

 4           f * Cl A Cl f A  for every set A  in 
X ;   

 5     1 1       f Int B * Int f B  for every set
B  in Y .  
Proof .     1 2 :   Let B  be a closed set in Y , then 
Y BΒ  is an open set in Y .  Then 

   1 1 f Y B X f BΒ Β  is a * open set in X ;

It follows that  1f B  is a * closed closed subset 
of X .   
   2 3 :   Let B  be any subset of  Y .  Since 

 Cl B  is closed in Y .   then  1f Cl B     is 

* closed  in X .Therefore,  1   * Cl f B

  1   * Cl f Cl B  1f Cl B .     

   3 4 : Let A  be any subset of X .  By  3   we 
have 

       1 1          * Cl A * Cl f f A f Cl f A . 

 Therefore,           f * Cl A Cl f A .  

   4 3 :  Let B  be any subset of Y .  Then by 
hypothesis, we get  

       1 1      
   

f * Cl f B Cl f f B Cl B .  

Therefore we obtain  
    1 1     * Cl f B f Cl B .  

   3 5 :  Let B be any subset of Y .  Then by 
hypothesis, we get  

    1 1     * Cl f Z B f Cl Z B Β Β  and hence 

     1 1   
 

X * Int f B X f Int B .Β Β

Therefore we obtain  
    1 1    f Int B * Int f B .  

   5 1 :  Let B  be an open set in Y  and 

   1 1       f Int B * Int f B .  Then,  1f B

 1    * Int f B . But,  1   * Int f B

 1f B . Hence,    1 1     f B * Int f B .   

Therefore,   1f B  is * open set in X .  
Theorem 3.5.   Let  1 1X , ,   2 2X ,  and  3 3X ,  
be three topological spaces. If a map 

   1 1 2 2f : X , X ,  is * continuous  and 

   2 2 3 3g : X , X ,   is a continuous map, then 

   1 1 3 3g f : X , X ,    is * continuous.  
 Proof . Obvious. 
Theorem 3.6.  Let  X ,   and  Y ,   be two 
topological spaces. Then    f : X , Y ,   is a 

* continuous map, if one of the following holds:  

 1    1 1       f * Int B Int f B  for every set 
B  in Y .  

 2     1 1       Cl f B f * Cl B  for every set 
B  in Y .  

 3             f Cl A * Cl f A  for every set A  in 
X .  
Proof .   1  Let B  be any open set of Y .  Then 

   1 1       f * Int B Int f B .  We get 

   1 1f B Int f B .      Therefore,  1f B   is an 

open set. Since very open set is * copen.  Hence, 
f  is a * continuous  function.   

 2  Let B  be a closed subset of Y . Then by 

hypothesis,    1 1       Cl f B f * Cl B .  Since 

B  is closed,   * Cl B B.  Thus 

   1 1Cl f B f B .      Hence  1f B  is closed in 

X .  So f  is a continuous *  function. 
 3  Let B  be any open set of Y .Then  1f B  is a 

set in X  and   1f Cl f B  
 

  1 
 

* Cl f f B .  This implies 

    1   
 

f Cl f B * Cl B .  This is nothing but 

condition  2 .  Hence f  is a  * continuous  map. 
 

4. OPEN FUNCTIONS

AND CLOSED FUNCTIONS
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Definition 4.1.  A map    f : X , Y ,   is 
called * open   resp. * closed  if the 
image of each open (resp. closed) set in X  is 

* open   resp. * closed   in  Y , .   
Theorem 4.2.  A map    f : X , Y ,   is 

* open  if and only if  f Int A     

    * Int f A  for each set A  in X .  
Proof .  Suppose that f  is a * open  map. 
Since  Int A A, then    f Int A f A .    By 

hypothesis,  f Int A    is a * open  set and 

    * Int f A  is the largest * open  set 

contained in  f A .   Hence  f Int A   

    * Int f A .  
Conversely, suppose A  is an open set in X .  
Then,           f Int A * Int f A .  Since 

 Int A A,  then    f A Y Int f A .      
Therefore,  f A  is a * open  set in   Y ,   
and f  is a * open  function. 
Theorem 4.3.  A function    f : X , Y ,   is 

* closed  if and only if  
          * Cl f A f Cl A   for each set A  in 

X .  
Proof .  Suppose f  is a * closed  function. 
Since for each set A  in X .   Cl A  is closed 
set in X , then  f Cl A     is a * closed  set 

in Y .   Also, since    f A f Cl A ,    then 

          * Cl f A f Cl A .  
Conversely, Let A  be a closed set in X .  
Since     * Cl f A  is the smallest 

* closed  set containing  f A ,  then 
       f A * Cl f A    f Cl A f A .  

Thus,        f A * Cl f A .  Hence,   f A  is 
a * closed  set in Y .  Therefore, f  is a 

* closed  function. 

Theorem 4.4.  Suppose that   1 1X , ,   2 2X ,  
and  3 3X ,  are any three topological spaces.  
Suppose also that    1 1 2 2f : X , X ,  and

   2 2 3 3g : X , X ,    are two functions. 
Then,   
 1  if g f  is * open and f  is continuous 
surjective, then g  is a * open  function. 
 2   if g f is open and g  is * continuous  
injective, then f  is a * open  function.   
Proof.   1  Let V  be an open set in 2X .  
Then,  1f V  is an open set in 1X . Since 
g f  is  a  * open  map, then 
   1g f f V         1g f f V g V  

 
 

(because f  is surjective) is a * open  set 
in  3X .Therefore, g  is a * open  function.  
 2  Let U  be an open set in 1X .  Then, 

 g f U    is an open set in 3X .  Therefore, 

    1g g f U f U      (because g  is injective) 
is a * open  set in 2X .  Hence, f  is a 

* open  map. 
Theorem 4.5.  Let  X ,   and  Y ,   be two 
topological spaces and    f : X , Y ,   be 
a bijective function. Then the following 
statements are equivalent: 
 1 f  is a * open  function; 
 2 f   is a * closed  function;  
(3) 1f   is a * continuous function.   
Proof .     1 2 :  Suppose A  is a closed set 
in X .  Then X AΒ  is an open set in X  and 
by  1 ,   f X AΒ is a * open set in Y .  Since 
f is bijective, then    f X A Y f A .Β Β  

Hence,  f A  is a * closed  set in Y .  
Therefore, f  is a * closed  function.    
   2 3 :  Let f  be a * closed  function and 
A  be closed set in X .  Since f  is bijective, 
then      

11f A f A


   which is a * closed  
set in  Y .  Therefore, by Theorem 3.4,  1f   is a 

* continuous  function.   
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   3 1 :   Let A  be an open set in X .  Since 
1f  is a * continuous  function, then 

     
11f A f A


    is a * open  set in Y .   
Hence, f  is a * open  function. 
 
5. IRRESOLUTE FUNCTIONS

   
In this section, we introduce a new type of 
function called * irresolute  function and 
obtain some of its properties and 
characterizations. 

Definition 5.1.   A function    f : X , Y ,    is 
called a * irresolute  function if the inverse 
image of each  * open  set in Y is a  

* open  set in X .  

Theorem 5.2.   Every * irresolute  function is a 
* continuous  function.  

Proof .  Straightforward. 

Theorem 5.3.Let  X ,  and  Y ,  be two 
topological spaces. Let f  be a function from X  
into Y .  Then, the following statements are 
equivalent:  

 1  f  is a * irresolute  function;  

 2  The inverse image of each * closed  set in  
Y  is a * closed  set in X ;   

 3     1 1       * Cl f B f * Cl B   for every 
set  B  in Y;  

 4              f * Cl A * Cl f A   for every 
set A   in X ;  

 5    1 1        f * Int B * Int f B   for 
every B  in Y .  

Proof .    1 2 :  Let B  be a * closed  set in 

Y .  Then Y BΒ  is a * open  set in Y .  Hence 
   1 1 f Y B X f BΒ Β  is a * open  set in 

X .  It follows that  1f B  is a * closed  
subset of  X .  

   2 3 : Let B  be any subset of  Y .  Since 
 * Cl B  is a * closed  set in Y ,  then 

 1   f * Cl B  is a * closed  set in X .  Thus 

 1   * Cl f B   1   * Cl f * Cl B 

 1   f * Cl B .  

   3 4 :   Let A  be any subset of X .  By  3 ,   

we have     1     * Cl A * Cl f f A 

  1   f * Cl f A .   Therefore 

    f * Cl A     * Cl f A .  

   4 5 :  Let B  be any subset of Y .  By  4 ,  

     1 1      
   

f * Cl X f B * Cl f X f B Β Β

and  

     1    
 

f X * Int f B * Cl Y B Β Β

   Y * Int B .Β Therefore we have 

     1 1        
X * Int f B f Y * Int B Β Β

and hence     1 1        f * Int B * Int f B .   

   5 1 :  Let B  be a * open set in Y  and 

   1 1        f * Int B * Int f B .   Then

 1f B    1   * Int f B  But,  

   1 1    * Int f B f B .  Hence 

   1 1     f B * Int f B . Therefore  1f B  is 
* open  in X .  Thus f  is a * irresolute  

function. 

Theorem 5.4.  Let    1 1 2 2f : X , X ,   and 
   2 2 3 3g : X , X ,   be * irresolute  maps. 

Then    1 1 3 3g f : X , X ,    is * irresolute.  

Proof .  Obvious. 

6.TOTALLY CONTINUOUSFUNCTIONS
 

 

In this section, the notion of totally 
* continuous  function is introduced as well as 

its characterizations are investigated. 
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Definition 6.1.  Let  X ,  be a topological space. 
A subset A  of X is called * clopen if A  is 
both * open  and * closed  set in X . 

Definition 6.2.  Let   X ,  and  Y ,   be two 
topological spaces. A function 

   f : X , Y ,   is called a totally 
* continuous function if the inverse image of 

each open set in  Y  is * clopen  in X .  

Definition 6.3.A topological space  X , is 
called * connected  if it is not the union of two 
non-empty disjoint * open  sets.  

Theorem 6.4.  A topological space  X ,  is 
* connected  if and only if X  and   are the 

only * clopen  subsets of  X .  

Proof .  Obvious. 

Theorem 6.5.  Let  X ,   be a topological 
space. If    f : X , Y ,   is a totally 

* continuous surjection and  X ,  is 
* connected,  then  Y ,    is an indiscrete 

space. 

Proof .  Suppose that  Y ,   is not an indiscrete 

space and let V  be a proper non-empty open 
subset of  Y , .  Since f  is a totally 

* continuous  function, then  1f V  is a 
proper non-empty * clopen  subset of X .  

Therefore    1 1    UX f V X f VΒ   and X  is 
a union of two non-empty disjoint * open  
sets, which is a contradiction. Therefore  Y ,   
must be an indiscrete space.  

Theorem 6.6.  A topological space  X ,  is  
* connected   if and only if every totally 
* continuous function from  X ,  into any 

0T space   Y ,   is a constant map. 

Proof .  :  Suppose that    f : X , Y ,   is a 
totally * continuous  function, where   Y ,    
is a 0T space. Assume that f  is not constant 
and x,y X  such that    f x f y .  Since 

 Y ,   is 0T ,and  f x  and  f y  are distinct 

points in Y ,   then there is an open set V in 
 Y ,    containing only one of the points  f x  
and  f y .  We take the case  f x V  and  
 f y V .  The proof of the other case is similar. 

Since f  is a totally * continuous function, 
 1f V  is a  * clopen  subset of  X  and  

 1x f V ,  but  1y f V .  Since X   

   1 1   Uf V X f V ,Β  X  is a union of two 
non-empty disjoint  * open subsets of X .  
Thus  X ,  is not * connected,  which is a 
contradiction.  

:  Suppose that  X ,  is not a * connected  
space. Then there is a proper non-empty  

* clopen  subset A of X .  Let  Y a,b and 

     Y , , a , b ,   define    f : X , Y ,    by 

 f x a   for each x A  and  f x b for 
x X A.Β  Clearly f  is not constant and totally 
* continuous  where Y  is  0T ,  and thus we 

have a contradiction. 

Definition 6.7.  A topological space  X ,  is said 
to be:  

 i  1* T  if for each pair of distinct points x  
and y  of X , there exist * open  sets U and 
V containing x  and y, respectively such that 
y U  and  x V .  

 ii  2* T  if for each pair of distinct points x  
and y  in X , there exist disjoint  * open  sets 
U and V  in  X  such that x U  and  y V .  

Theorem 6.8. Let    f : X , Y ,   be totally 
* continuous  and Y  be a 1T space.   If A  is a 

non-empty * connected  subset of X ,  then 
 f A  is a singleton.   

Proof .  Suppose that  f A  is not a singleton.  
Let    1 1f x y f A   and    2 2f x y f A ,   
such that  1 2y y , where   1 2x ,x A and 1 2x x .  
Since 1 2 y ,y Y  such that   1 2y y  and Z  is a  

1T space,  then there exists an open set G  in Y  
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(say) containing 1y   but not 2y .  Since f  is 
totally * continuous  Then  1f G   is a 

* clopen  set containing  1x  but not  2x .  Now  

X       1 1   f G X f G .U Β  Hence X  is the 
union of two disjoint non-empty * open  
subsets. Let  1

1A A f G I  and 

  1
2A A X f G . I  Clearly 1 1x A  and 

2 2x A . We observe that 1A  and 2A  are two 
disjoint nonempty * open  subsets of A  such 
that 1 2A A A . U  This implies that A  is not 

* connected,  which is a contradiction. Thus 
 f A  is a singleton.   

Theorem 6.9.Let  X ,   and  Y ,    be two 
topological spaces. Let    f : X , Y ,   be a 
totally * continuous  injection. If Y  is  0T ,  
then  X ,   is  2* T .  

Proof .  Let x,y X with x y. Since f  is 
injection,     f x f y .   Since Y  is 0T ,  there 
exists an open subset V  of  Y  containing  f x  
but not   f y ,   or containing  f y but not 
 f x .  Thus for the first case we have, 

 1x f V  and   1y f V .  Since f  is totally 
* continuous and  V  is an open subset of Y ,  
 1f V  and  1X f VΒ  are disjoint 

* clopen subsets of X containing x  and y, 
respectively. The second case is proved in the 
same way. Thus X  is 2* T .  

 

7. SLIGHTLY CONTINUOUS

FUNCTIONS

   

In this section, the notion of slightly 
* continuous function is introduced and 

characterizations and some relationships of 
slightly * continuous  functions and basic 
properties of slightly * continuous  functions 
are investigated and obtained. 

Definition 7.1.  Let  X ,   and  Y ,    be two 
topological spaces.  Then a function 

   f : X , Y ,    is called a slightly 

* continuous  function at a point  x X  if for 
each clopen subset V  in Y  containing  f x ,  
there exists a * open  subset  U  in X  
containing x  such that  f U V .  The function 
f  is said to be slightly * continuous  if it has 

this property at each point of X . 

Theorem 7.2.  Let  X ,   and  Y ,    be two 
topological spaces. The following statements are 
equivalent for a function    f : X , Y , :   

 1  f  is slightly * continuous;   

 2  for every clopen set V Y ,  1f V  is 
* open;   

 3 for every clopen set V Y ,  1f V  is 
* closed;   

 4  for every clopen set V Y ,  1f V  is 
* clopen;  

Proof .     1 2 :  Let V  be a clopen subset of 
Y and let  1x f V .  Since f  is slightly  

* continuous,  by  1 ,  there exists a * open  
set xU  in X  containing x  such that  xf U V;

hence  1
xU f V . We obtain that 

    1 1
xf V U : x f V .  U  Thus  1f V  is 

* open.   

   2 3 :  Let V  be a clopen subset of Y .  Then 
Y VΒ  is clopen.  By   2 ,     1 f Y VΒ   

 1X f VΒ  is Y open.  Thus  1f V  is 
Y closed.   

   3 4 :  It can be shown easily.  

   4 1 :  Let x X  and V  be a clopen subset 
of Z  with   f x V .  Let  1U f V .  By 
assumption U  is  * clopen  and so * open.  
Also x U and   f U V .  

Theorem 7.3.  Let  1 1X , ,  2 2X ,   and 
 3 3X , be topological spaces.  Let 

   1 1 2 2f : X , X ,   and 
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   2 2 3 3g : X , X ,   be functions. Then, the 
following properties hold:  

 1   If f  is * irresolute  and g is slightly 
* continuous, then g f is slightly 
* continuous.    

 2  If f  is slightly * continuous and g  is 
continuous, then g f is slightly * continuous.   

Proof .   1  Let V  be any clopen set in Y .  Since 
g  is slightly * continuous,   1g V  is 

* open.  Since f  is * irresolute,  

 1 1f g V        
1

g f V
  is * open.  

Therefore, g f  is slightly * continuous.  

 2  Let V  be any clopen set in Y .  By the 
continuity of g,  1g V  is clopen. Since f  is 

slightly * continuous,  so  1 1f g V    

   
1

g f V
  is * open.  Therefore, g f  is 

slightly * continuous.  

Corrolary 7.4.  Let  1 1X , ,   2 2X ,  and 
 3 3X , be topological spaces.  If 

   1 1 2 2f : X , X ,   is a * irresolute  
function and    2 2 3 3g : X , X ,   is a 

* continuous function. then g f is slightly 
* continuous.  

Theorem 7.5.  Let  1 1X , ,   2 2X ,   and 
 3 3X , be topological spaces. Let

   1 1 2 2f : X , X ,   be a * irresolute,

* open  surjection and    2 2 3 3g : X , X ,   
be a function. Then g is slightly  * continuous  
if and only if g f is slightly * continuous.  

Proof .  : Let g  be slightly * continuous.  
Then by Theorem 7.3,  g f is slightly 

* continuous.   

:  Let g f  be slightly * continuous and V

be clopen set in Y .  Then    
1

g f V
   is 

* open. Since f  is a * open  surjection, 

then      
1 1f g f V g V
   

 
 is * open  in Y .

This shows that g  is slightly * continuous.  

Theorem 7.6.  Let  X ,   and   Y ,    be two 
topological spaces.  Suppose that a function 

   f : X , Z ,  is a slightly * continuous

function and  X ,   is * connected.   Then Y  
is connected. 

Proof .  Suppose that Y  is a disconnected space. 
Then there exist non-empty disjoint open sets U
and V  such that  UY U V.  Therefore, U and V
are clopen sets in Y .  Since f  is slightly 

* continuous,   1f U   and  1f V  are    
* open  in X .  Moreover,  1f U   and 
 1f V are disjoint and    1 1X f U f V .  U   

Since f  is surjective,  1f U   and  1f V  are 
non-empty. Therefore, X   is not * connected.  
This is a contradiction and hence Y  is 
connected. 

Corrolary 7.7. The inverse image of a 
disconnected space under a slightly 

* continuous surjection is * disconnected.  

Definition 7.8.  A topological space  X ,  is said 
to be  

 1 locally indiscrete if every open set of X  is 
closed in X , 

 (2) 0 dimentional  if its topology has a base 
consisting of clopen sets. 

Theorem 7.9.   Let  X ,  be a topological 
space.  If     f : X , Y ,   is a slightly 

* continuous  function and Y  is locally 
indiscrete, then f  is * continuous.  

Proof . Let V  be any open set of Y .  Since Y  is 
locally indiscrete, V  is clopen and hence 

 1f V  is * open in X .  Therefore, f  is 
* continuous.  

Theorem 7.10.  Let  X ,   be a topological 
space.  If     f : X , Y ,   is a slightly 
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* continuous  function and Y is 0 dimentional,  
then f  is * continuous.   

Proof .  Let x X and V Y  be any open set 
containing   f x . Since Y  is 0 dimentional,  
there exists a clopen set U  containing   f x  
such that U V.  But f  is slightly  

* continuous, then there exists a * open  set 
G  of  X  containing x such that 
     f x f G U V.  Hence f is  
* continuous.   

Theorem 7.11.  Let  X ,   be a topological 
space.  Let    f : X , Y ,  be a slightly 

* continuous  injection and Y  is 
0 dimentional.  If Y is 1T ,  2resp. T ,  then X  is 

1* T ,   2resp. * T .  

Proof .  We prove only the second statement, the 
proof of the first being analogous. Let Y  be 2T .
Since f is injective, for any pair of distinct 
points x,y X ,     f x f y .  Since Y  is 2T ,  
there exist open sets 1V ,  2V   in Y  such that 
  1f x V ,   2f y V  and 1 2 IV V . Since Y  is 

0 dimentional,  there exist clopen sets 1U ,  2U  in 
Y  such that   1 1 f x U V  and   2 2 f y U V .

Consequently    1 1
1 1

  x f U f V ,   
   1 1

2 2y f U f V    and 
   1 1

1 2   If U f U .   Since f  is slightly 
* continuous,  1

1
f U  and  1

2
f U   are  

* open   sets and this implies that X  is 

2* T .  

Definition 7.12.A topological space  X ,  is 
said to be:  

 1 clopen 1T  if for each pair of distinct points 
x  and y  of X , there exist clopen sets U  and 
V  containing x  and y, respectively such that  
y U  and  x V .   

 2  clopen  2T  (clopen Hausdorff or ultra-
Hausdorff) if for each pair of distinct points x  

and y  in X , there exist disjoint clopen sets U  
and V  in X  such that  x U  and y V .  

Theorem 7.13. Let  X ,  be a topological 
space.  Let    f : X , Y ,   be a slightly 

* continuous  injection and  Y ,   be clopen 

1T ,  then X   is  1* T .   

Proof .  Suppose that Y  is clopen 1T .  For any 
distinct points x  and y  in X ,  there exist 
clopen sets V  and  W   such that  f x V ,  
 f y V  and  f y W ,   f x W.  Since f is 

slightly * continuous,   1f V   and  1f W  
are * open  subsets of  X  such that 

 1x f V ,   1y f V   and  1y f W ,   
 1x f W .  This shows that X   is 1* T .  

Theorem 7.14.  Let   X ,  be a topological 
space.  Let    f : X , Y ,   be a slightly 

* continuous  injection and Y  is clopen 2T ,  
then X   is 2* T .   

Proof .   For any pair of distinct points x  and y  
in X , there exist disjoint clopen sets U  and  V  
in Y  such that  f x U  and  f y V .Since f  
is slightly * continuous,   1f U  and   1f V  
are  * open  subsets of X  containing x and 
y,respectively. Therefore    1 1   If U f V  
because IU V .  This shows that X  is 

2* T .  

Definition 7.15.A topological space  X ,  is 
said to be mildly compact (resp. mildly 
Lindelof) if every clopen cover of X has a finite 
(resp. countable) sub cover. 

Definition 7.16.  A topological space  X ,  is 
called  * compact   resp. * Lindelof  if every 

* open  cover of  X  has a finite (resp. 
countable) sub cover. 

Theorem 7.17.  Let  X ,   be a topological 
space. Let    f : X , Y ,   be a slightly 

* continuous surjection, then the following 
statements hold:  
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 1   if  X , is * compact,  then Y  is mildly 
compact.  

 2   if  X ,  is * Lindelof ,  then Y  is mildly 
Lindelof. 

Proof .  We prove  1 ,  the proof of  2  being 
entirely analogous. Let   V :  be a clopen 
cover of  Y .  Since f  is slightly * continuous,  

  1
  f V :  is a * open  cover of  X .  

Since X  is * compact,  there exists a finite 
subset 0   of   such that 

  1
0  UX f V : .  Thus we have 

 0 UY V :   which means that Y  is mildly 
compact. 

Definition 7.18.  A topological space  X ,  is 
called * closed  compact (resp. * closed  
Lindelof) if every cover of X  by * closed  sets 
has a finite (resp. countable) sub cover.  

Theorem 7.19.  Let  X ,  be a topological 
space. Let    f : X , Y ,   be a slightly 

* continuous surjection. Then the following 
statements hold:  

 1  if  X ,  is * closed compact, then Y  is 
mildly compact.  

 2   if   X ,   is * closed  Lindelof, then Y  is 
mildly Lindelof.  

Proof .  It can be obtained similarly as 
Theorem 7.17.  

 

8. ALMOST CONTINUOUS

FUNCTIONS

   

Definition 8.1.  Let  X ,  be a topological space. 
Then a subset A  of X  is said to be regular open 
(respectively, regular closed) if     A Int Cl A  

     resp. A Cl Int A .  

Let x X .  Then by  O X , x  we denote the set 
of all open sets that contains x.  Furthermore, by 

  O X , x   resp. RO X , x ,  we denote the set 

of all open*  (resp. regular open) sets that 
contain  

Definition 8.2.  A map    f : X , Y ,   is 
called almost continuous  at x X  if for each 

  V RO Y , f x .  there exists  U O X , x such 
that  f U V .   If f  is almost continuous at 
every point of  X , then it is called almost 
continuous.  

Equivalently, A map    f : X , Y ,   is called 
almost continuous if  1f V  is open set in X  
for every regular open set V  of Y .  

Definition 8.3.  A map    f : X , Y ,   is 
called almost * continuous at x X if for each 

  V RO Y , f x ,  there exists   U * O X , x

such that  f U V .  If f  is almost 

Y continuous at every point of X , then it is 
called almost * continuous.  

Definition 8.4.  Let  X ,  be a topological space. 
Then a subset A  of X  is said to be open   if 
for each x A, there exists a regular open set U  
such that  x U A.  The complement of a 

open   set is said to be closed.  The 
intersection of all closed   sets containing A  is 
called the closure   of A  and it is denoted by 

  Cl A .  

The next three results characterize almost 
* continuous functions. 

Definition 8.5.  Let    f : X , Y ,   be a 
function. Then the following statements are 
equivalent: 

 1  f  is almost * continuous.  

 2   1f V  is * closed  in X , for every  
regular closed set V of Y .  

 3   1  
 f Cl Int V  is * closed  in X , for 

every closed set V  of Y .  

 4    1  
 f Int Cl V  is * open   in X , for 

every open set V  of Y .  

x.
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 Proof .     1 2 : Let V  be  regular closed set 
in Y .  Then Y VΒ  is  regular open set in Y .  
Since f  is almost * continuous,  

   1 1 f Y V X f VΒ Β  is * open  in X .  
Hence  1f V    is  * closed  in X .  

   2 3 :  Let  V   be  closed set in Y .  Then 

    V Cl Int V  is  regular closed set in Y .  Then 

by hypothesis,    1  
 f Cl Int V  is * closed  in 

X .  

   3 4 :  Let  V   be  open set in Y .  Then 

    V Int Cl V  is regular open set in Y .  Then  

   Y Int Cl VΒ  is  regular  closed set in Y .  

Then by hypothesis,   1    f Y Int Cl VΒ  

  1  
 X f Int Cl VΒ is * closed  in  X .  

Hence   1  
 f Int Cl V  is  * open  in X .  

   4 1 :  Let  V   be  regular open set in Y .  

Then     V Int Cl V  is regular open set and 
every regular open set is open set in Y .  Then by 
hypothesis,      1 1    f Int Cl V f V   is 

* open in X .  Hence f  is almost 
* continuous.  

Theorem 8.6.  Let    f : X , Y ,   be a map, 
then the following statements are equivalent:  

 a f  is almost * continuous.  

 b for each x X  and each open set V  
containing  f x , there exists * open  set U  

containing x  such that       f U Int Cl V ;   

 c   1f F  is * closed  in X  for every regular 
closed set F  in Y;  

 d    1f V   is  * open  in X  for every 
regular open set V  in Y .  

Proof .  The proof is obvious and thus omitted 

Theorem 8.7.  Let    f : X , Y ,   be a 
function, then the following statements are 
equivalent:  

 a  f  is almost * continuous;  

 b            f * Cl A Cl f A  for every 
subset A  of X ;   

 c    1 1       * Cl f B f Cl B  for every 
subset B  of  Y;  

 d  1f F  is * closed  in X  for every 
closed   set F  of Y;   

 e  1f V  is open*  in X  for every 
open   set V  of Y .  

Proof .    a b :   Let A  be a subset of X .  

Since      Cl f A  is closed   in Y ,  it may be 
denoted by   I F : ,  where each F  is 
regular closed set in Y  such that   f A F .The 
set  1f F


 is * closed   Theorem 8 5.  and 

contains A. We also have 
     1 1f Cl f A f F : .      I    Now we 

note that  1A f F , 
 for each .  Since 

each   1f F


 is closed* .  Thus 

   1 * Cl A f F ,  for each .  So 

       1 1        I* Cl A f F : f Cl f A .  

  Therefore we obtain 
           f * Cl A Cl f A .    

   b c :  Let B  be a subset of Y .We have 

       1 1        
   

f * Cl f B Cl f f B Cl B  

 and hence  1   * Cl f B  1f Cl B .     

   c d :  Let F  be any closed   set of Y .  We 

have    1 1        * Cl f F f Cl F 

 1f F  and hence  1f F  is * closed.  in X .  

   d e :  Let V  be any open   set of Y .  Then 
Y VΒ  is closed.   We have 

   1 1 f Y V X f VΒ Β  is * closed  in X .  
Hence  1f V  is * open  in X .   

   e a :   Let V  be any regular open set in Y .  
Since V  is open  in Y ,  we have  1f V  is 
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* open  in X  and hence by Theorem 8.6,  f  is 
almost * continuous.  

The following equivalent definition of almost 
* continuity  follows immediately from 

Theorem 8.6.  

Definition 8.8.  A map    f : X , Y ,   is 
called almost * continuous  if  1f V  is 

* open  set in X  for every regular open set 
V  of Y .  

Theorem 8.9.  Every * continuous  function is  
almost * continuous  function.  

Proof .  Let    f : X , Y ,   be a 
* continuous  function.   Let V  be a regular 

open set in Y .   Then V  is open set in Y ,   since 
every regular open set is open set.  Since f  is 

* continuous  function,  1f V  is * open  
in X .  Therefore f  is almost * continuous  
function.  

Theorem 8.10.  Every * irresolute  function is 
almost * continuous function.  

Proof .  Let    f : X , Y ,   be a 
* continuous function. Let V  be regular open 

set in Y .  Then V  is  * open  set in Y ,  since 
every regular open set is open set and every 
open set is * open  set. Since f  is 

* irresolute  function, then  1f V  is 
open* in X .  Therefore f  is almost 

* continuous  function.  

Theorem 8.11. Every almost continuous function 
is almost * continuous  function.  

Proof . Let    f : X , Y ,  be an almost 

continuous function. Let V  be regular open set 
in Y .  Since f is almost continuous function, then 

 1f V  is open in  X , ,  implies  1f V is 
* open  in  X , . Therefore f  is almost 
* continuous function.  

In fact, we have the following implications:  

   continuity * continuity almost * continuity 

 

Theorem 8.12.  If    1 1 2 2 f : X , X , is 
* irresolute  and    2 2 3 3 g : X , X ,  is 

almost * continuous,  then 
   1 1 3 3  g f : X , X ,  is almost 

* continuous.  

Proof .  Let V  be regular open set in 3X .  Since 
g  is almost * continuous,  then  1g V  is  

* open  set in 2X .  Since f  is * irresolute,  

then  1 1   f g V  is  * open in 1X . Hence 
g f  is almost * continuous.  

Theorem 8.13.  Let    f : X , Y ,   be a 
function and      g : X , X Y ,    be the 

graph function defined by     g x x, f x for 
every x X .  If g  is almost * continuous,  then  
f  is almost Y continuous.  

Proof.  Let x X  and   V RO Y , f x .  Then 

    g x x, f x X V .    Observe that 

    X V RO X Y , .   If g  is almost 
* continuous,  then there exists 

  U * O X ,x  such that   g U X V.  It 
follows that  f U V ,   hence f  is almost 

* continuous.  

9. CONTRA CONTINUOUS

FUNCTIONS

   

Definition 9.1.  A function    : , ,  f X Y  is 
called contra * continuous   if  1f V  is 

* closed  in X  for every open set  V  of Y.  

Definition 9.2.   Let  X,   be topological space 
and A X.  Then the intersection of all open sets 
of X  containing A  is called kernel of A  and is 
denoted by  Ker A .  
Lemma 9.3.The following properties hold for 
subsets A and B  of a topological space  X, .   
 a   x Ker A  if and only if A F    for any 
closed set F  of X  containing x.  
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 b   A Ker A  and  A Ker A  if A  is open in 
X.  
 c   If A B,  then    Ker A Ker B .  
Lemma 9.4.The following properties hold for a 
subset A  of a topological space  X,  : 

 i     * * ;    Int A X Cl X A Β Β   

 ii   * x Cl A  if and only if A U    for 
each  * , ; x O X x  
 iii  A  is * open  if and only if 

 A * Int A ;   
 iv  A  is * closed  if and only if 

 A * Cl A .   
Theorem 9.5.Let     : , ,  f X Y  be a 
function. Then the following conditions are 
equivalent: 
 a f  is contra * continuous;   
 b  for each x X  and each closed subset F  
of Y  containing  ,f x  there exists 

 * , U O X x  such that   ;f U F   

 c for each closed subset F  of Y,   1f F  is 
* open  in X;  

 d     *       f Cl A Ker f A  for every subset 

A  of X;  

 e     1 1*        Cl f B f Ker B  for every 
subset B  of Y.  
Proof .     :a b  Let x X  and F  be any 
closed set  of Y containing  .f x  Using (a), we 
have    1 1 f Y F X f FΒ Β  is * closed   in 
X  and so  1f F  is * open  in X.  Taking 

 1 ,U f F  we get x U  and   F.f U  
    :b c  Let F  be any closed set of Y and 

 1 .x f F  Then  f x F and there exists a 
* open  subset xU  containing x such that 
  F.xf U  Therefore, we obtain 

    1 1:  xf F U x f F , which is * open   
in X.  
    :c a  Let V  be any open set of Y.  Then 
since  Y VΒ  is closed in Y,  by (c) 

   1 1X f Y V f VΒ Β  is * open   in X.  
Therefore,  1f V  is * closed   in X.  
    :c d  Let A  be any subset of X.  Suppose 

that   .   y Ker f A  Then by Lemma 9.3, there 
exists a closed set F  of  Y  containing y such 
that   . f A F  This implies that 

 1  A f F  and so 
   1* . Cl A f F   Therefore, we obtain 

 *   f Cl A F   and 

 * .   y f Cl A  Hence,  

   * .       f Cl A Ker f A  

    :d e  Let B be any subset of .Y  Using 
(d) and Lemma 3.3 we have 

     1 1*      
   

f Cl f B Ker f f B

 . Ker B  Thus it follows that  

   1 1* .       Cl f B f Ker B   

    :e a  Let V  be an open subset of Y.  Then 
from Lemma 9.3 and (e) we have 

     1 1 1*         Cl f V f Ker V f V  and 

hence    1 1* .    Cl f V f V  This shows that 

 1f V  is *closed  in .X  
The following lemma can be verified easily. 
Lemma 9.6.  A function    : , ,  f X Y  is 

*continuous  if and only if for each x X  and 
for each open set V of  Y containing  ,f x  
there exists  * , U O X x  such that 
  .f U V  

Theorem 9.7.  Suppose that a function  2  is 
* contra continuous  and Y  is regular.  Then 

f  is * continuous.   
Proof .  Let  x X  and V be an open set of Y  
containing  .f x  Since  Y  is regular, there 
exists an open set G  in Y  containing  f x   
such that   .Cl G V  Again, since f  is 

* , contra continuous  so by Theorem 9.5, there 
exists  * , U O X x  such that 
   .f U Cl G  Then     . f U Cl G V  Hence 

f  is . continuous  
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Definition 9.8.  A function    : , ,  f X Y   is 

called  almost continuous  if for each x X  

and each open set V  of Y  containing  ,f x

there exists  , U O X x  such that 

    .    f U Int Cl V
 

 Almost continuous  function can be 
equivalently defined as in the following 
proposition. 
Proposition 9.9.  Let    : , ,  f X Y  be a 
function. Then the following statements are 
equivalent: 
 a  f  is . almost continuous   

 b   For each x X and each regular open set 
V of Y containing  ,f x  there exists 

 , U O X x  such that   .f U V   

 c   1f V  is  open  in X for every regular 
open set V of Y. 
Definition 9.10.  A function    : , ,  f X Y  is 
said to be  pre open  if image of each 

 open  set of X  is a   open  set of .Y  
Definition 9.11.  A function    : , ,  f X Y  is 
said to be   irresolute  if preimage of a 

 open subset of  Y  is a  open  subset of 
.X  

Theorem 9.12.  Suppose that a function 
   : , ,  f X Y   is  pre open  and 

. contra continuous   Then  f  is 

. almost continuous  
Proof .  Let x X  and V be an open set 
containing  .f x  Since f  is 

, contra continuous  then by Theorem 9.5, 
there exists  , U O X x  such that 
   .f U Cl V  Again, since f  is 

, pre open   f U  is open   in .Y  

Therefore,        f U Int f U  and hence 

       .         f U Int Cl f U Int Cl V    
So f  is . almost continuous  
Theorem 9.13.  Let   , : X    be any 
family of topological spaces. If a function 

:f X X


  is , contra continuous  

then :f X X     is 
, contra continuous  for each ,  where 

  is the projection of X

  onto .X   

Proof. For a fixed ,  let V  be any open 

subset  of .X   Since   is continuous, 

 1 V    is open in .X

  Since f  is 

, contra continuous   

     
11 1f V f V
 

   
      is closed   

in .X  Therefore,  f   is 
 contra continuous  for each ,  

Definition 9.14.  Let  ,X   be a topological 
space. Then the   frontier of a subset A of ,X  
denoted by  , Fr A  is defined as 

                Fr A Cl A Cl X A   Β

    .         Cl A Int A Β  
Theorem 9.15. The set of all points x  of X  at 
which    : , ,  f X Y  is not 

 contra continuous  is identical with the union 
of   frontier  of the inverse images of closed sets 

of Y  containing  .f x  

 Proof . Necessity: Let f  be not 
 contra continuous  at a point .x X  Then 

by Theorem 9.5, there exists a closed set F  of Y

containing  f x  such that     f U Y F Β   

for every  , , U O X x  which implies that 

 1 . U f Y F Β  Therefore, 

   1 1 .            x Cl f Y F Cl X f F Β Β  

Again, since  1 ,x f F  we get 

 1     x Cl f F  and so it follows that 

 1 .     x Fr f F  

Sufficiency: Suppose that   1     x Fr f F  

for some closed set F of  Y containing  f x  
and f  is  contra continuous at .x  Then 
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there exists  , U O X x  such that 

  .f U F   Therefore  1x U f F   and 
hence it follows that 

    1 1 .            x Int f F X Fr f F Β  

But this is a contradiction. So f  is not 
 contra continuous  at .x   

Definition 9.16.  A function 

   : , ,f X Y   is called almost 
 weakly continuous  if, for each x X  and 

for each open set V of Y containing  ,f x  
there exists  , U O X x  such that 

   .f U Cl V   
Theorem 9.17.  Suppose that a function 

   : , ,f X Y   is . contra continuous  
Then f  is almost . weakly continuous  

Proof .  For any open set V of  Y,  Cl V  is 

closed in .Y  Since f  is , contra continuous  

 1f Cl V     is  open  set in X. We take 

 1 ,U f Cl V     then    .f U Cl V  

Hence f  is almost , weakly continuous  
Theorem 9.18.  Let    : , ,  f X Y  and  

   : , ,  g Y Z  be any two functions. Then 
the following properties hold:  
 i  If f  is  contra continuous  function and 

g  is a continuous function, then gof  is   
. contra continuous    

 ii  If f  is   irresolute  and g  is 
, contra continuous  then gof  is 
. contra continuous  

Proof .   i  For ,x X  let W be any closed set 
of Z containing   .g f x  Since g  is 

continuous,  1V g W  is closed in Y. Also, 
since f  is , contra continuous  there exists 

 , U O X x  such that   .f U V  

Therefore            g f U g f U g V W  and 

so it implies that    . g f U W  Hence, gof  is 
. contra continuous  

 ii  For x ∈ X, let W be any closed set of Z 

containing   .g f x  Since g  is 
, contra continuous  there exists  

  , V O Y f x such that   .g V W  
Again, since f  is ,  irresolute  there exists 

 , U O X x  such that   .f U V  This 
shows that    . g f U W  Hence, gof  is 

. contra continuous  
Theorem 9.19.  Let    : , ,  f X Y   be 
surjective   irresolute  and  pre open  

function and    : , ,g Y Z   be any 

function. Then    : , ,g f X Z    is 
 contra continuous  if and only if g  is 

. contra continuous  
Proof . The  “if”  part is easy to prove. To prove  
“only if"  part, let    : , ,g f X Z    be 

 contra continuous  and let F  be a closed 

subset of  Z. Then    
1

g f F
  is a  open   

subset of X i.e.  1 1f g F     is  open  in 

.X  Since f is , pre open

  1 1f f g F  
    is a  open  subset of Y 

and so  1g F  is  open  in .Y   Hence, g  is 
. contra continuous  

Definition 9.20.  A topological space  ,X   is 
said to be   normal  if each pair of 
non empty  disjoint closed sets can be 
separated by disjoint  open  sets. 
Definition 9.21.  A topological space  ,X   is 
said to be ultranormal if each pair of non-empty 
disjoint closed sets can be separated by disjoint 
clopen sets. 
Theorem 9.22.  Suppose that    : , ,  f X Y  
is a , contra continuous  closed injection and 
Y  is ultranormal.  Then X  is . normal  
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Proof . Let A  and B  be disjoint closed subsets 
of  .X  Since f  is closed injection,  f A  and 

 f B  are disjoint closed subsets of .Y  Again, 

since Y  is ultranormal,  f A  and  f B  are 
separated by disjoint clopen sets P and Q (say) 
respectively. Therefore,  f A P  and 

 f B Q  i.e.,  1A f P  and 

 1 ,B f Q   where  1f P  and  1f Q  are 
disjoint  open  sets of  X    (since f  is 

). contra continuous This shows that X is 
. normal  

Definition 9.23.  A topological space  ,X   is 
called  connected  provided that X  is not 
the union of two disjoint nonempty  open sets 
of .X  
Theorem 9.24.  Suppose that    : , ,  f X Y

is  contra continuous  surjection, where X  
is  connected  and Y  is any topological 
space, then Y is not a discrete space. 
Proof. If possible, suppose that Y  is a discrete 
space. Let P  be a proper nonempty open and 
closed subset of  .Y  Then  1f P  is a proper 
nonempty  open  and   closed  subset of 

,X  which contradicts to the fact that X  is 
 connected  Hence the theorem follows. 

Theorem 9.25.  Suppose that    : , ,  f X Y  
is  contra continuous  surjection and X  is 

. connected  Then Y  is connected. 
Proof . If possible, suppose that Y is not 
connected. Then there exist nonempty disjoint 
open sets P and Q such that .Y P Q  So P 
and Q are clopen sets of .Y  Since f  is 

 contra continuous function,  1f P and 

 1f Q  are  open  sets of .X  Also  1f P  

and  1f Q   are nonempty disjoint  open  

sets of X  and    1 1 ,X f P f Q   which 
contradicts to the fact that X  is . connected   
Hence Y  is connected. 

Theorem 9.26.  A topological space   ,X   is 
 connected  if and only if every 

 contra continuous  function from X  into 

any 1T space   ,Y   is constant. 
Proof . Let X  be . connected  Now, since Y  

is a 1 ,T space   1 :f y y Y    is 

disjoint  open  partition of  .X   If 2   

(where    denotes the cardinality of  ),  then 
X  is the union of two nonempty disjoint 
 open  sets. Since X  is , connected  we 

get 1.   Hence, f  is constant. 
Conversely, suppose that X  is not 

 connected  and every 
 contra continuous function from X  into 

any 1T space  Y  is constant. Since X  is not 
, connected  there exists a non-empty proper 

 open  as well as   closed  set V  (say) in 
.X  We consider the space  0,1Y   with the 

discrete topology .  The function 
   : , ,f X Y   defined  by    0f V   

and    1f X VΒ  is obviously 
 contra continuous  and  which is 

.non constant  This leads to a contradiction. 
Hence X  is . connected  
Definition 9.27.   A topological space  ,X   is 
said to be 2

 T  if for each pair of distinct 
points ,x y  in X  there exist   , U O X x

and  , V O X y  such that .U V    

Theorem 9.28.   Let  ,X   and  ,Y   be two 
topological spaces and suppose that for each pair 
of distinct points x and y  in X there exists a 

function    : , ,f X Y   such that 

   f x f y  where Y  is an Urysohn space 
and f  is  contra continuous  function at x  
and y.  Then X   is 2.

 T  
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Proof .  Let ,x y X  and .x y   Then by 
assumption, there exists a function 

   : , , ,f X Y    

 such that    f x f y  where Y is Urysohn 
and f  is  contra continuous  at  x  and .y  
Now, since Y  is Urysohn, there exist open sets 
U and V of  Y containing  f x  and  f y   

respectively, such that     .Cl U Cl V   
Also, f   being  contra continuous  at x  and 
y  there exist  open  sets P and Q containing 
x  and y  respectively such that  

   f P Cl U  and    .f Q Cl V   Then 

   f P f Q   and so .P Q   
Therefore, X  is  2.

 T  
Corrolary 9.29.  If    : , ,  f X Y  is 

 contra continuous  injection where Y is an 
Urysohn space, then X is 2.

 T  
Corollary 9.30.  If  f   is  contra continuous  

injection of a topological space  ,X   into an 

ultra Hausdorff space  Y, ,  then X  is 

2.
 T   

Proof .  Let  ,x y X  where .x y  Then, since 
f  is  an injection and Y is ultra Hausdorff, 

   f x f y  and there exist disjoint closed 

sets U  and V   containing  f x  and  f y  
respectively. Again, since f  is 

, contra continuous     1 ,  f U O X x  
and    1 ,  f V O X y  with 

   1 1 .  f U f V   This shows that X  is 

2.
 T  

 
10. ALMOST CONTRA

CONTINUOUS FUNCTIONS

 
 

Definition 10.1.  A function    : , ,  f X Y  is 
called almost  contra continuous  if   1f V  
is   closed for every regular open set V of Y.  

Theorem 10.2.  Let    : , ,  f X Y  be a 
function. Then the following statements are 
equivalent: 
 a f  is almost ; contra continuous  

 b  1f F  is  open  in X  for every 
regular closed set F of Y; 
  c  for each  x X   and each regular open set 
F of Y containing  ,f x  there exists 

 , U O X x  such that   .f U F   
 d  for each  x X   and each regular open set 

V of Y  non-containing   ,f x  there exists a 
 closed  set K of X non-containing x  

such that  1 . f V K   
Proof .    a b :  Let F be any regular closed set 
of Y. Then  Y FΒ  is regular open and 
therefore      1 1X C .    f Y F f F XΒ Β   
Hence,    1 O .  f F X  The converse part 
is obvious.  
   b c :  Let F be any regular closed set of Y 

containing   .f x  Then    1 O  f F X  

and  1 .x f F  Taking  1U f F  we get 
  .f U F   

   c b :   Let F be any regular closed set of Y 
and  1 .x f F  Then, there exists  

 O , xU X x  such that  xf U F  and so 
 1 .xU f F  Also, we have 

 
 1

1 .




 xx f F

f F U   Hence  

   1 O .  f F X  
   c d :  Let V be any regular open set of Y 

non-containing f(x). Then  Y VΒ  is regular 
closed set of Y containing f(x). Hence by (c), 
there exists   O , U X x  such that 
   .f U Y VΒ  Hence, we obtain 

   1 1X  U f Y V f VΒ Β  and so 
   1 . f V X UΒ Now, since  O , U X  

 X UΒ  is   closed set of X  not containing 
x. The converse part is obvious. 
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Theorem 10.3.  Let    : , ,  f X Y  be almost 
. contra continuous  Then f  is almost 
. weakly continuous  

Proof .   For ,x X  let H  be any open set of Y  
containing  .f x   Then  Cl H  is a regular 

closed set of Y  containing  .f x  Then by 
Theorem 10.2, there exists  , G O X x  
such that    .f G Cl H  So f  is almost 

. weakly continuous  
Theorem 10.4.  Let    : , ,  f X Y  be an 
almost  contra continuous  injection and Y  
is weakly Hausdorff. Then X  is 1.

 T  
Proof. Since Y  is weakly Hausdorff, for distinct 
points ,x y  of Y,  there exist regular closed sets 
U and V such that   ,f x U   f y U and 
  ,f y V   .f x V  Now, f  being almost 

, contra continuous   1f U  and  1f V  are 
 open  subsets of X  such that  1 ,x f U

 1y f U  and  1 ,y f V  1 .x f V  This 
shows that X  is 1.

 T  
Corollary 10.5.   If    : , ,  f X Y  is a  

 contra continuous injection and Y  is 
weakly Hausdorff, then X  is 1.

 T  
Theorem 10.6. Let    : , ,  f X Y  be an 
almost  contra continuous  surjection and 
X  be . connected  Then Y  is  connected.  
Proof . If possible, suppose that Y  is not 
connected. Then there exist disjoint non-empty 
open sets U  and V of Y  such that .Y U V  
Since U and V  are clopen sets in Y,  they are 
regular open sets of Y.  Again, since f  is 
almost  contra continuous  surjection, 

 1f U  and  1f V are  open sets of X  and 
   1 1 . X f U f V  This shows that X  is not 

. connected  But this is a contradiction. 
Hence Y  is connected. 
Definition 10.7.  A topological space  X,   is said 
to be  compact  if every  open  cover of 
X  has a finite subcover. 

Definition 10.8.  A topological space  X,   is said 
to be countably  compact if every countable 
cover of X  by  open  sets has a finite 
subcover. 
Definition 10.9.   A topological space  X,   is 
said to be   Lindelof if every  open  cover 
of X  has a countable subcover. 
Theorem 10.10.  Let    : , ,  f X Y  be an 
almost  contra continuous surjection.  Then 
the following statements hold: 
 a  If X  is , compact  then Y  is 

.S closed  
 b  If X  is ,  Lindelof  then Y  is 

.S Lindelof  

 c  If X  is , countably compact then Y  is 
.countably S closed  

Proof .   a : Let  : V I   be any regular 

closed cover of Y.  Since f  is almost
 contra continuous  then   1 : f V I   is 

a  open  cover of .X  Again, since X  is 

, compact  there exist a finite subset 0I  of I  

such that   1
0:

 X f V I  and hence 

 0Y V : I .   Therefore, Y  is .S closed  

The proofs of  b and  c are being similar to 

 a : omitted. 
Definition 10.11.  A topological space  X,   is 
said to be   closed compact if every 

  closed  cover of X  has a finite subcover. 
Definition 10.12.  A topological space  X,   is 
said to be countably   closed if every 
countable cover of X  by   closed  sets has a 
finite subcover. 
 Definition 10.12.  A topological space  X,   is 
said to be  closed Lindelof if every 

  closed  cover of X  has a countable 
subcover. 
Theorem 10.14. Let    : , ,  f X Y be an 
almost  contra continuous  surjection.  Then 
the following statements hold: 
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 a  If X  is   closed  compact, then Y  is 
nearly compact. 
 b  If X  is , closed Lindelof  then Y  is 

.nearly Lindelof  

 c  If X  is , countably closed compact  
then Y  is .nearly countable compact  
Proof .   a :  Let  V : I   be any regular open 

cover of Y.  Since f  is almost
, contra continuous  then   1 :f V I

   

is a   closed  cover of .X  Again, since X  is 
, closed compact  there exists a finite subset 

0I  of I  such that   1
0:

 X f V I  and 
hence  0Y V : I .   Therefore, Y  is nearly

.compact  

The proofs of  b and  c are being similar to 

 a : omitted.  
 

11. CLOSED GRAPHS VIA

OPEN SETS
 

 

 

Definition 11.1.  Let    : , ,  f X Y  be a 
function. Then the graph 

     , :G f x f x x X   of f  is said to be 
 closed (resp.  contra closed ) if 

for each      , , x y X Y G fΒ  there exist a 
 , U O X x  and an open set (resp. a closed 

set) V in Y containing y  such that 

    .U V G f    

Lemma 11.2.  A graph  G f  of a function 

   : , ,  f X Y  is   closed (resp. contra

) closed  in X Y  if and only if for each 
     , , x y X Y G fΒ  there exist 

 , U O X x  and an open set (resp. a closed 

set) V  in Y containing y  such that 

  .f U V    
Proof .  We shall prove that    f U V   
    .  U V G f  Let     .  U V G f  Then 

there exists    ,  x y U V  and    , .x y G f  
This implies that ,x U  y V and 

  . y f x V  Therefore,   . f U V  Hence 
the result follows. 
Theorem 11.3. Suppose that    : , ,  f X Y  
is contra  continuous  and Y  is Urysohn. 

Then  G f  is contra   closed  in .X Y  

Proof . Let      , . x y X Y G fΒ  It follows 

that   .f x y  Since Y is Urysohn, there exist 

open sets V and W in Y such that   ,f x V  

y W  and     .Cl V Cl W   Now, since 
f  is contra , continuous  there exists a 

 , U O X x  such that    f U Cl V  
which implies that       . f U Cl W Hence by 

Lemma 11.2,  G f   is contra   closed  in 

.X Y  
Theorem 11.4.  Let    : , ,  f X Y  be a 
function and :g X X Y   be the graph 

function of ,f  defined by     ,g x x f x  

for every .x X  If g  is contra , continuous  
then f   is contra . continuous  
Proof .  Let G be an open set in ,Y  then X G  is 
an open set in .X Y  Since g  is contra 

, continuous  it implies that 

   1 1  f G g X G  is a   closed  set of .X  
Therefore,  f  is contra . continuous  
Theorem 11.5.  Let    : , ,  f X Y  have a 
contra   closed   graph. If f  is injective, then 
X  is  

Proof .  Let 1x  and 2x  be any two distinct points 

of .X  Then, we have 
      1 2, . x f x X Y G fΒ  Then, there exists a  

 open  set U in X  containing 1x  and 

  2,F C Y f x  such that   .f U F   

Hence  1 .U f F    Therefore, we have 

2 .x U  This implies that X  is  

1.
 T

1.
 T
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Definition 11.6.  The graph  G f  of a function 

   : , ,  f X Y  is said to be strongly contra 
  closed   if for each      , , x y X Y G fΒ  

there exist  , U O X x  and regular closed 

set V  in Y containing y  such that 

    .U V G f    
Lemma 11.7.  The graph  G f  of a function 

   : , ,  f X Y  is strongly contra 
  closed   in X Y if and only if for each 

     , , x y X Y G fΒ  there exist

 , U O X x  and regular closed set V  in Y

containing y  such that   .f U V   
Theorem 11.8.  Let    : , ,  f X Y be an  
almost  weakly continuous and Y  is 

Urysohn. Then  G f is strongly contra 
  closed in .X Y  

Proof . Let      , . x y X Y G fΒ  Then 

 y f x  and since Y  is Urysohn, there exist 
open sets ,G H  in Y  such that   ,f x G

y H  and      . Cl G Cl H  Now, since f  
is almost , weakly continuous  there exists

 , U O X x  such that    .f U Cl G  This 
implies that     f U Cl H  

    ,   f U Cl Int H  where    Cl Int H  is 

regular closed in .Y   Hence by above Lemma 
11.7,  G f  is strongly contra   closed  in 

.X Y  
Theorem 11.9.  Let    : , ,  f X Y be an  

almost  continuous and Y  is 2.T  Then 

 G f is strongly contra   closed in .X Y  

Proof . Let      , . x y X Y G fΒ  Then 

 y f x  and since Y  is 2 ,T  there exist open 

sets G   and  H  containing y  and   ,f x  
respectively, such that ; G H which is 

equivalent to     .   Cl G Int Cl H  Again, 
since f  is almost  continuous  and 

   Int Cl H is regular open, so there exists 

 , W O X x  such that     .   f W Int Cl H  
This implies that      f W Cl G  and by 

Lemma 11.7,  G f  is strongly contra 
  closed  in .X Y  

Definition 11.10.   A filter base   on a 

topological space  ,X   is said to be 
 convergent to a point x  in X  if for any 

 , U O X   containing ,x  there exists an 
F such that .F U  

Theorem 5.11. Prove that every function 
   : , , ,X Y    where  ,Y   is 

compact with   closed  graph is 
. continuous  

Proof . Let   be not  continuous  at .x X  
Then there exists an open set S  in Y  containing 
 x  such that  T S  for every 

 , . T O X x  It is obvious to verify that 

  : ,   T X T O X x  is a filterbase on 
X  that  converges to .x Now we shall show 

that       : ,

   T Y S T O X x Β  is a 

filterbase on .Y  Here for every  , , T O X x

  ,T S  i.e.     .T Y S Β  So . Let 
, .G H  Then there are 1 2, T T  such that 

   1G T Y S Β  and    2 .H T Y S Β   
Since   is a filterbase, there exists a 3 T  
such that 3 1 2T T T  and so 

   3  W T Y S Β with .W G H  It is 

clear that 
G  and G H  imply .H   

Hence   is a filterbase on .Y   Since Y SΒ  is 

closed in compact space ,Y  S  is itself 

compact. So,   must adheres at some point 

.y Y SΒ   Here  y x  ensures that 

   , .x y G   Thus  Lemma 11.2 gives us a 
 , U O X x  and an open set V in Y

containing y such that   , . .U V i e 
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    .  U Y S V Β  But this is a 
contradiction.  
Theorem 11.12.  Suppose that an open surjection 

   : , ,X Y    possesses a   closed  

graph. Then Y  is 2.T  
Proof .  Let 1 2,p p Y  with 1 2.p p  Since   

is a surjection, there exists an 1x X  such that 

 1 1x p   and  1 2.x p   Therefore 

   1 2,  x p G  and so by Lemma 11.2, there 

exist  1 1, U O X x  and open set 1V  in Y  

containing 2p  such that  1 1 .  U V  Since   

is , open   1U  and 1V  are disjoint open 

sets containing 1p  and 2p  respectively. So Y  

is 2.T  
Corollary 11.13.  If a function  

   : , ,X Y    is a surjection and 
possesses a   closed graph, then Y is 1.T  
 
12. CONCLUSIONS  
The author introduced continuous,   

open,  closed,  irresolute,  totally 
continuous,  slightly continuous,  almost 
continuous,  contra continuous  and almost 

contra continuous  functions in topological 
space and investigated several properties and 
characterizations of these functions. He also 
presented closed graphs via open  sets.  

 

ACKNOWLEDGEMENT  

The author is indebted to Prince Mohammad Bin 
Fahd University for providing all research 
facilities during the preparation of this research 
paper. 

 

 

 

 

REFERENCES 

[1]. Metin Akdag & Alkan Ozkan, Some 
Properties of Contra gb – continuous 
Functions, Journal of New Results in 
Science, 1 (2012) 40 – 49. 

[2].  G. Anitha and M. Mariasingam,  Contra  g ~ -
WG Continuous Functions,  International Journal 
of Computer Applications (0975 – 8887)  
Volume 49– No.11, (July 2012), 34 – 40. 

[3].  S. Balasubramanian, Almost contra vg-
continuity, International Journal of Mathematical 
Engineering and Science, Volume 1 Issue 8 
(August 2012), 51 – 65.  

[4]. M. Caldas and S. Jafari, Some properties of 
contra  continuous functions, Mem. Fac. Sci. 
Kochi. Univ., Series A. Math., 22(2001), 19 – 28.     

[5].  Miguel Caldas, Saeid Jafari, and Raja M. 
Latif: “b – Open Sets and A New Class of 
Functions”, Pro Mathematica, Peru, Vol. 23, 
No. 45 – 46, pp. 155 – 174, (2009). 

[6]. R. Devi, S. Sampathkumar & M. Caldas. On 
supra α-open sets and sα-continuous maps. 
General Mathematics 16  (2): 77-84 (2008). 

[7]. J. Dontchev, Contra – continuous functions and 
strongly S – closed spaces, Internat. J. Math. Sci., 
19(2) (1996), 303 – 310.  

[8]. J. Dontchev and T. Noiri, Contra-semi-
continuous functions, Mathematica Pannonica, 
10(2) (1999), 159-168. 

[9]. E. Ekici, Almost contra-precontinuous functions, 
Bull. Malaysian Math. Sci. Soc. , 27(1) (2004), 
pp. 53-65. 

[10]. E. Ekici and T. Noiri, Contra    
precontinuous functions, Bull. Cal. Math. Soc., 
98(3) (2006), 275 – 284. 

[11]. E. Ekici, On contra g  -continuous 
functions, Chaos, Solitons and Fractals, 
35(2008), 71 – 80. 

[12]. M. K. Gosh and C.K. Basu, Contra – e 
– Continuous functions, Gen. Math. Notes, Vol. 
9, No.2, (2012), 1 – 18.  

[13]. H. Z. Hdeib, ω-closed mappings, 
Rev. Colomb. Mat., 16 (1-2) (1982), 65–78. 

[14]. S. Jafari and T. Noiri, Contra – super – 
continuous functions, Annales Univ. Sci. 
Budapest 42(1999), 27 – 34.  

[15]. S. Jafari and T. Noiri, contra
continuous functions between topological spaces, 
Iranian Int. J. Sci, 2(2001), 153 – 167. 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS 
DOI: 10.46300/91019.2020.7.6 Volume 7, 2020

ISSN: 2313-0571 64



[16]. S. Jafari and T. Noiri, On contra – 
precontinuous functions, Bull. Malaysian Math. 
Soc., 25(2002), 115 – 128. 

[17]. K. Krishnaveni and M. 
Vigneshwaran, Some Stronger forms of 
supra bTµ - continuous function, Int.J.Mat. 
Stat.Inv.,1(2), (2013), 84-87. 

[18]. K. Krishnaveni, M. Vigneshwaran, 
bTµ- compactness and bTµ - connectedness 
in supra topological spaces, European 
Journal of Pure and Applied Mathematics, 
Vol. 10, No. 2, 2017, 323-334 ISSN 1307-
5543 – www.ejpam.com. 

[19]. Raja M. Latif, On Characterizations 
of Mappings, Soochow Journal of 
Mathematics, Volume , No. 4, pp. 475 – 
495. 1993. 

[20]. Raja M. Latif, On Semi-Weakly 
Semi-Continuous Mappings, Punjab 
University Journal of Mathematics, Volume 
XXVIII, (1995) 22 – 29. 

[21]. Raja M. Latif, Characterizations 
and Applications of Gamma-Open Sets, 
Soochow Journal of Mathematics, (Taiwan), 
Vol. 32, No. 3, pp. 369 – 378. (July, 2006). 

[22]. Raja M. Latif, Characterizations of 
Mappings in Gamma-Open Sets, Soochow 
Journal of Mathematics, (Taiwan), Vol. 33, 
No. 2, (April 2007), pp. 187 – 202. 

[23]. Raja M. Latif, Raja M. Rafiq, and 
M. Razaq, Properties of Feebly Totally 
Continuous Functions in Topological 
Spaces, UOS. Journal of Social Sciences & 
Humanities (UOSJSSH), ISSN # Print:2224-
2341. Special Edition 2015, pp.72-84. 

[24]. Raja M. Latif, Characterizations of 
Feebly Totally Open Functions, “Advances 
in Mathematics and Computer Science and 
their Applications, (2016) pp. 217 – 223. 

[25]. Raja M. Latif, Alpha – Weakly 
Continuous Mappings in Topological 
Spaces, “International Journal of Advanced 
Information Science and Technology 
(IJAIST), ISSN # 231 9:2682 Vol. 51, No, 
51, July 2016. pp. 12 – 18. 

[26]. N. Levine, Semi-open sets and 
semi-continuity in topological spaces, Amer. 
Math. Monthly, 70(1963), 36 - 41. 

[27]. A.I. El Maghrabi and A.M. 
Mubaraki, “Y-Open Set in Topological 

Space”, International Journal of 
Engineering, Computer Science and 
Mathematics, Vol. 2, No. 2, (July – 
December 2011), 121 – 132. 

[28].  A. S. Mashhour, A. A. Allam, F. S. 
Mohamoud and F. H. Khedr, On supra 
topological spaces, Indian J. Pure and Appl. 
Math., No.4, 14(1983), 502 -  510. 

[29]. Ali M. Mubaraki, Massed M. Al-
Rshudi and Mohammad A. Juhani, 

* Open and * continuity in 
topological spaces, Journal of Taibah 
University for Science, Volume 8, 
Issue 2, (2014), pp. 142 – 148.  

[30]. A.A. Nasef, Some properties of contra
  continuous functions, Chaos, Solitons and 
Fractals, 24(2005), 471 – 477. 

[31]. Govindappa Navalagi and S.M. Sjata, 
Some Contra – Continuous Functions via Pre – 
Open and Open Sets, International Journal 
of Mathematical Sciences & Applications, Vol. 2 
Nr. 1 J. 2012, pp. 23 – 230.  

[32]. T. Noiri and V. Popa, Some properties 
of almost contra precontinuous functions, Bull. 
Malays. Math. Sci. Soc., 28 (2005), pp. 107-116. 

[33]. A. Al-Omari and M.S. Md Noorani, 
Contra continuous and almost contra
 continuous, Internat. Jour. Math. Math. 
Sci.,  Article ID 40469, (2007) 13 pages. 

[34]. A. Al – Omari and M.S. Md Noorani, 
Some properties of contra – b – continuous and 
almost contra – b – continuous functions, 
European Jour. Pure. Appl. Math., 2(2) (2009), 
213 – 220. 

[35]. O. Ravi, G. Ramkumar & M. 
Kamaraj. On Supra β-open Sets and Supra 
β-continuity on Topological Spaces.  
Proceedings of UGC Sponsored National 
Seminar on Recent Developments in Pure 
and Applied Mathematics, 20-21 January 
2011, Sivakasi, India. 

[36]. A. Robertand, S. Pious Missier, On 
Semi*-Connected and Semi*-Compact 
Spaces, International Journal of Modern 
Engineering Research, Vol. 2, Issue 4, July 
– Aug. 2012, pp. 2852 – 2856. 

[37]. O. R. Sayed, Takashi Noiri.: On 
supra b – open set and supra b – continuity 
on topological spaces. European Journal of 
pure and applied Mathematics, 3(2) 295 –
302, 2010. 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS 
DOI: 10.46300/91019.2020.7.6 Volume 7, 2020

ISSN: 2313-0571 65

http://www.ejpam.com/


[38]. O.R. Sayed, Supra β-connectedness 
on Topological Spaces Proceedings of the 
Pakistan Academy of Sciences 49 (1): 19-23 
(2012). 

[39]. N. Rajesh. On total Continuity, 
Strong Continuity and contra  
Continuity, Soochow Journal of 
Mathematics,2007, 33.4:679-690.  

[40]. Omar Rashed Sayed, “Supra b-
irresoluteness and supra b-connectedness on 
Topological Space”, Kyungpook Math J. 53 
(2013), 341 – 348. 

[41]. S. Sekar and R. Brindha, Almost 
Contra Pre – Generlized b – Continuous 
Functions in Topological Spaces, Malaya Journal 
of Matematik , 5(2) (2017) 194 – 201. 

[42]. Appachi Vadivel, Radhakrishnan 
Ramesh and Duraisamy Sivakumar, Contra

*  continuous and almost contra * 

continuous functions, Sahand Communications in 
Mathematical Analysis, Vol. 8,  No. 1 (2017), 55 
– 71. 

[43].   M.K.R.S.Veerakumar, Contra – Pre – 
Semi – Continuity. B.M.M.S.S., (2005 ) 28 
(1):67 – 71.   

[44]. Stephen Willard and Raja M. Latif, 
Semi-Open Sets and Regularly Closed Sets 
in Compact Metric Spaces, Mathematica 
Japonica, Vol. 46, No.1, pp. 157 – 161, 
1997. 

[45]. Stephen Willard, General 
Topology, Reading, Mass.: Addison Wesley 
Pub. 

[46]. Co. (1970). 

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS 
DOI: 10.46300/91019.2020.7.6 Volume 7, 2020

ISSN: 2313-0571 66




